
INTRODUCTION TO SCIENTIFIC COMPUTING WITH PYTHON

Final Project – Deep Feedforward Neural Network
Jiri Stepanovsky

J093010001
June 14, 2021

1. Abstract

In this project, we present the theory behind deep neural networks and the principle of
gradient descent learning algorithm. We illustrate it by implementing a functional, fully
connected neural network with linear, sigmoid, ReLu, and softmax layers trainable by a
gradient descent algorithm using mean squared and cross-entropy loss functions. We test
our network on regression and multinominal classification tasks. Our results are
comparable to the same network implemented in Keras deep learning framework, both in
performance and in accuracy.

2. Introduction

Feedforward neural networks are simply a function:

where ! is an input vector (also called a feature vector), and ! is an output
vector. To obtain an output ! from a feature vector ! , a forward pass is performed, which
simply means computing the function ! . A typical feedforward network consists of
multiple independent layers chained together, so we can write:

where ! represents the function of i-th layer in the network with ! layers.

Training neural network
In order to train the network to perform a specific operation, first, it is necessary to
evaluate the network's performance. For this purpose a loss function:

is used, where ! is the output vector from a forward pass in Eq. (2), and ! is a
target vector. The loss function gives an estimate of how much the network output differs
from the target, and in its simplest form, it can be computed as the distance between the
two vectors:

To compute the loss function, both ! and ! vectors are required, which means a labeled
dataset containing features and corresponding (desired) targets.
We say that to train the network, we mean to minimize the loss function over the whole
dataset. This is an optimization problem, which can be solved using various methods. In
this project, however, a gradient descent algorithm is used.

x ∈ ℝn y ∈ ℝm

y x
y = f (x)

fi L

y ∈ ℝm z ∈ ℝm

x z

! f : x → y (1)

! y = f (x) = (fL ∘ . . . ∘ f2 ∘ f1)(x) (2)

! ℒ : y, z → ℝ (3)

! ℒ = |y − z | = | f (x) − z | (4)

Gradient descent method
Gradient descent is an iterative method that finds the minimum of a function ! by
following the negative gradient of that function:

where ! defines the relative step size (known as the learning rate) and ! defines a set of
variables that can be adjusted in order to minimize ! .
During neural network training, we are trying to minimize the loss function ! over a
training dataset by adjusting the parameters of each layer in the network. We can define
the gradient descent update for a neural network similarly to Eq. (5):

where ! are parameters of i-th layer within the network.

Backpropagation algorithm

Computing ! in Eq. (6) for deep layers is not straightforward, so lets express it for the

last layer of a network with ! layers:

The loss function depends on the output of the last layer performing a function ! with
input ! and parameters ! . Therefore, a chain rule can be applied to get the expression
in Eq. (7). Similarly, the second and third last layers can be expressed as:

There is a clear repeating pattern in Eq. (8), so by expressing:

for each layer, it is possible to simplify Eq. (7) and (8) to:

Equations (6), (9), and (10) are the core of a gradient descent training algorithm using

backpropagation. We start by computing ! and then gradually compute !

according to Eq. (9) starting from the last layer ! . By using ! , it is then trivial to
compute Eq. (10) for each layer and subsequently apply the gradient descent update in
Eq. (6) for all parameters within the network.

f

γ x
f

ℒ

wi

∂ℒ
∂wi

L

fL
xL wL

δL+1 =
∂ℒ
∂y

δi

δL δi+1

! xt+1 = xt − γ
∂f
∂x (5)

! wit+1
= wit − γ

∂ℒ
∂wi

(6)

!
∂ℒ
∂wL

=
∂ℒ(y, z)

∂wL
=

∂ℒ(fL(xL), z)
∂wL

=
∂ℒ
∂y

∂fL
∂wL

(7)

!

∂ℒ
∂wL−1

=
∂ℒ(fL(xL), z)

∂wL−1
=

∂ℒ(fL(fL−1(xL−1)), z)
∂wL−1

=
∂ℒ
∂y

∂fL
∂xL

∂fL−1

∂wL−1

∂ℒ
∂wL−2

=
∂ℒ(fL(fL−1(fL−2(xL−2))), z)

∂wL−1
=

∂ℒ
∂y

∂fL
∂xL

∂fL−1

∂xL−1

∂fL−2

∂wL−2

(8)

! δi = δi+1
∂fi
∂xi

(9)

!
∂ℒ
∂wi

= δi+1
∂fi
∂wi

(10)

3. Methods

In the implementation below, we assume both the input vector ! and target vector ! are
row vectors.

Linear layer
We start with the implementation of a linear layer as seen in Figure 1.

Figure 1: A representation of a linear layer with m outputs

The linear layer consists of ! units, called perceptrons, where each unit performs an affine
transformation of the input vector ! with ! elements:

which can be written in a matrix form as:

where weight matrix ! and bias vector ! represent the layer's parameters.
Equation (12) is the forward pass function. To complete the layer, it is also necessary to
express the ! function from Eq. (9):

the transposition of ! is necessary due to ! being a row vector. And finally expressing
the gradient descent Eq. (6) with respect to layer's parameters ! and ! using Eq. (10):

Sigmoid layer
Next, lets define a sigmoid activation function. It is popular in regression tasks, since it
offers a smooth 'S' shaped output, which is differentiable on ! .
The forward pass function may look like the logistic function:

where ! is the j-th element of input vector ! .

x z

m
x n

W b

δ

flinear x
W b

ℝ

xj x

Σ

Σ

Σ

x1

x2

xn

y1

y2

ym

...

! yi =
n

∑
j=1

xjwji + bi = xwi + bi , i = 1, 2, . . . , m (11)

! flinear = xW + b (12)

! δlinear = δi+1
∂f⊤

linear

∂x
= δi+1

∂(xW + b)⊤

∂x
= δi+1W⊤ (13)

!
Wt+1 = Wt − γ

∂ℒ
∂W

= Wt − γδi+1
∂f⊤

linear

∂W
= Wt − γδi+1

∂(xW + b)⊤

∂W
= Wt − γ x⊤δi+1

bt+1 = bt − γ
∂ℒ
∂b

= bt − γδi+1
∂f⊤

linear

∂b
= bt − γδi+1

∂(xW + b)⊤

∂b
= bt − γδi+1

(14)

! f(sigmoid)j =
1

1 + e−xj (15)

The delta function for the sigmoid layer expressed from Eq. (9) is therefore:

 which can be written in a vector form as:

Because sigmoid layer does not have any parameters, there is no gradient descent update.

ReLu layer
ReLu activation function has a sharp transition, which allows to split the input feature
space into multiple domains. The forward pass function is:

where ! is again the j-th element of input vector ! .

The ! function for ReLu layer expressed from Eq. (9) is:

and similar to sigmoid layer, there are no parameters for a gradient descent in Eq. (6).

Softmax layer
Softmax is a function commonly used to normalize the output of a neural network to a
probability distribution. It is useful mainly in multinominal classification tasks. The
forward pass function looks like:

The ! function is then:

Again, the layer does not have any parameters, so there is no gradient descent update.

Mean squared loss function
As already mentioned in Eq. (4), a common loss function is the distance between output
vector ! and target vector ! . Mean squared loss function computes the mean distance as:

where N is the length of output and target vectors. It has the same properties as Eq. (4),
but has a more practical derivation for the ! function:

xj x

δ

δ

y z

δ

! f(ReLu)j = {
0 xj ≤ 0
xj xj > 0 (18)

! δ(ReLu)j = δ(i+1)j

∂f(ReLu)j

∂xi
= {

0 xj ≤ 0
δ(i+1)j xj > 0 (19)

! fsof tmax =
ex

∑n
i=1 exi (20)

! δsof tmax = δi+1
∂fsof tmax

∂x
= δi+1 ⋅ [diag(x) − (f⊤

sof tmax ⋅ fsof tmax)] (21)

! ℒ =
1
N

|y − z |2 (22)

! δL+1 =
∂ℒ
∂y

=
1
N

∂ |y − z |2

∂y
=

2
N

(y − z) (23)

! δ(sigmoid)j = δ(i+1)j

∂f(sigmoid)j

∂xj
= δ(i+1)j

e−xj

(1 + e−xj)2
(16)

! δsigmoid = δ(i+1) fsigmoid(1 − fsigmoid) (17)

Cross-entropy loss function
Cross-entropy loss function is commonly used in combination with softmax function in
multinominal classification tasks. It is defined as:

where ! and ! are the i-th elements of vectors ! and ! , and N is their length. The ! is:

Softmax + Cross-entropy loss
In softmax layer, we perform ! and in cross-entropy loss we do ! . If we combine
these layers together, although, the forward pass function stays the same, it significantly
simplifies the computation of ! function.

The ! function of softmax layer in Eq. (21) can be expressed in index notation as:

where N is the length of vector ! . Because this softmax layer is combined with cross-
entropy loss, we can substitute ! in Eq. (26) for the corresponding ! function described
in Eq. (25). This simplifies the Eq. (26) to:

Both softmax and cross-entropy loss are mainly used in multinominal classification tasks.
In these tasks, the target vector ! is commonly one-hot encoded. It means, that the input
features should be classified as only a single class, which is represented by single 1 in
otherwise zero target vector (target vector could for example look like !).
This also means, that for any one-hot encoded target vector ! the following holds:

So when using a one-hot encoded target vectors, we can simplify Eq. (27) to:

Compared to the previous ! functions for softmax and cross-entropy loss layers in Eq. (21)
and (25), the ! function for the combination of these two layers is significantly simpler.
Equotation (29) can be also expressed in vector notation simply as:

zi yi z y δ

ex log(x)

δ

δ

y
δi+1 δ

z

z = [0 1 0 0 0]
z

δ
δ

! ℒ = −
N

∑
i=1

zi log(yi) (24)

! δ(L+1)i =
∂ℒi

∂yi
=

∂(−zi log(yi))
∂yi

= −
zi

yi
(25)

! δ(sof tmax)j = δ(i+1)j yj − δi+1y⊤yj = δ(i+1)j yj −
N

∑
k=1

δ(i+1)k
yk yj (26)

! δ(sof tmax+cross)j = −
zj

yj
yj −

N

∑
k=1

−
zk

yk
yk yj = − zj + yj

N

∑
k=1

zk (27)

!
N

∑
i=1

zi = 1 (28)

! δ(sof tmax+cross)j = − zj + yj

N

∑
k=1

zk = − zj + yj ⋅ 1 = yj − zj (29)

! δsof tmax+cross = y − z (30)

Training a network
When training a network composed of the above layers, first, the output vector ! of the
whole network is computed according to Eq. (2) from an input vector ! in the training
dataset using the forward pass functions defined in Eq. (12), (15), (18), and (20). Then, a
gradient of the loss function is computed according to Eq. (23) or (25) depending on the
loss function used (or according to Eq. (30), if the combination of softmax and cross-
entropy loss is used). By propagating this gradient from the last layer to the first, we can
compute ! functions for all layers in the network using Eq. (13), (17), (19), and (21).
Finally, we compute the update of the network's parameters using the gradient descent
algorithm. That actually means computing the update using Eq. (14) for linear layers
only, since there are no other layers with parametes in this implementation.

The network's parameters are not updated after each sample ! . For a better stability, the
process above is repeated for a certain number of samples in the dataset, and the
parameters are then updated according to the average trom all these samples. The
number of samples required to perform an update is called a batch.

Each update of the parameters after processing a batch is called an epoch, and the
training ends after a selected number of epochs was finished.

Regression experiment
The implemented network was tested on a curve fitting experiment. The input ! was a
random real value within an interval ! , and the target was a function ! .
The network's architecture is in Table 1, the sigmoid layer was used at the end to smooth
out the sharp edges from ReLu layers. The loss function is mean squared from Eq. (22).

Table 1: The architecture of the network used on a curve fitting experiment

The network was trained with a learning rate 0.01 for 100000 epochs with 100 random
samples per batch. The testing dataset consists of 500 real values equidistantly spaced
over the interval ! with the target being again ! .

Multinominal classification experiment
The second experiment was a digit classification task using MNIST public dataset of
handwritten digits [1]. Both the training and testing datasets were normalized. The first
200 samples from the training dataset can be seen in Figure 2.

The network's architecture is in Table 2, it contains several ReLu layers followed by one
softmax layer. The loss function was a cross-entropy loss from Eq. (24).

Table 2: The architecture of the network used on a digit classification experiment

y
x

δ

x

x
[−2π , 2π) sin(x)

[−2π , 2π] sin(x)

Layer: 0 1 2 3 4 5 6 7 8 9 L+1
Type: input linear ReLu linear Relu linear Relu linear sigmoid linear loss
Size: 1 10 10 100 100 100 100 10 10 1 1

Layer: 0 1 2 3 4 5 6 7 8 L+1
Type: input linear ReLu linear Relu linear Relu linear softmax loss
Size: 28x28 14x14 14x14 14x7 14x7 7x7 7x7 10 10 10

The network was trained with a learning rate 0.1 for 1000 epochs with 2000 samples per
batch. The dataset was not shuffled, so the samples were taken in sequence.

Figure 2: The first 200 samples from MNIST training dataset. Original (left), normalized (right).

4. Results

Both experiments were carried out on our implementation and on a model using Keras
deep learning framework [2]. In both cases, the network's architecture, training algorithm,
training dataset, loss function, batch size, and the number of epochs were the same.

Regression experiment
Results from the first experiment are summarized in Table 3.

Table 3: Results from the regression experiment

Our network required less time to finish training but performed a bit worse than the
network implemented in Keras framework. The output for both networks over the interval
! can be seen in Figure 3.

Figure 3: The network's outputs over the interval ! in the regression experiment

Both models perfectly matched the target function on a training interval ! , but,
as expected, they significantly diverge from the target outside of the training interval.
This is a common issue, and the only solution would be to use a different, possibly
recurrent, neural network architecture, that is able to generalize a periodic function.

[−3π , 3π]

[−3π , 3π]

[−2π , 2π)

Our implementation Keras implementation
Training time: 77 secs 118 secs

Loss on testing dataset: !1.6 ⋅ 10−5!3.2 ⋅ 10−5

The loss functions during training are in Figure 4. Our implementation seems to have a
bit more jitter during the training.

Figure 4: The network's loss functions during training

Multinominal classification experiment
The classification experiment was performed on three models. One was using our
implementation with separate softmax layer and cross-entropy loss, one was using our
implementation with combined softmax layer and cross-entropy loss as defined in Eq. (30),
and the last one was using the Keras framework. Results from the experiment are
summarized in Table 4.

Table 4: Results from the multinominal classification experiment

The simplification of the ! function computation in Eq. (30) noticeably reduced the
training time, however, the Keras framework still performed several times faster.
The accuracy during training can be seen in Figure 5. The progress is clearly periodic,
which is caused by the repeating format of the training dataset, as it is not shuffled.

Figure 5: The accuracy progress of the three networks during training

δ

Our: separate layers Our: combined layers Keras implementation
Training time: 84 secs 65 secs 20 secs

Accuracy on training data: 97.8% 97.7% 98.6%

Accuracy on testing data: 96.3% 96.3% 96.5%

5. Discussion

All results presented above are only illustrative, and there is no intention to precisely
compare the performance of our implementation of deep feedforward neural network to
the Keras deep learning framework. A much more thorough evaluation would be necessary
to arrive at a conclusion with any statistical significance.

We may, however, conclude that our implementation can be successfully trained on both
regression and classification tasks. The required training time is not too far off of the
Keras framework, and the accuracy and loss are very close to it, though not as good.

6. Conclusion

We have presented the mathematical background for deep feedforward neural networks.
We have described some common layers and loss functions and introduced the concept of
a backpropagation algorithm with a gradient descent optimization. Finally, we have
implemented the mathematical model into a functional neural network and successfully
tested it on regression and classification experiments.

References

[1] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner. (1998). Gradient-Based Learning
 Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324.
 http://yann.lecun.com/exdb/mnist/

[2] Keras deep learning framework. (June 2021). https://keras.io

